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ABSTRACT 

Synovial sarcoma is an aggressive mesenchymal neoplasm, driven by the SS18-SSX fusion, and 

characterized by immunogenic antigens expression and exceptionally low T cell infiltration levels. 

To study the cancer-immune interplay in this disease, we profiled 16,872 cells from 12 human 

synovial sarcoma tumors using single-cell RNA-sequencing (scRNA-Seq). Synovial sarcoma 

manifests antitumor immunity, high cellular plasticity and a core oncogenic program, which is 

predictive of low immune levels and poor clinical outcomes. Using genetic and pharmacological 

perturbations, we demonstrate that the program is controlled by the SS18-SSX driver and repressed 

by cytokines secreted by macrophages and T cells in the tumor microenvironment. Network 

modeling predicted that SS18-SSX promotes the program through HDAC1 and CDK6. Indeed, 

the combination of HDAC and CDK4/6 inhibitors represses the program, induces immunogenic 

cell states, and selectively targets synovial sarcoma cells. Our study demonstrates that immune 

evasion, cellular plasticity, and cell cycle are co-regulated and can be co-targeted in synovial 

sarcoma and potentially in other malignancies. 
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INTRODUCTION 

Therapeutic strategies harnessing the cytotoxic capacity of the adaptive immune response to target 

tumor cells have radically changed clinical practice, but response varies dramatically across 

patients and tumor types (1,2). Cancer types with defined genetics and exceptionally low T cell 

infiltration levels could help provide clues to some of the immune escape mechanisms underlying 

lack of response to immune therapies.  

 

One such cancer type is synovial sarcoma (SyS) (3), a highly aggressive mesenchymal neoplasm 

that accounts for 10-20% of all soft-tissue sarcomas in young adults (4). SyS tumors homogenously 

express several immunogenic cancer-testis antigens (CTAs) (5–8), which are recognized by 

circulating T cells in the peripheral blood of SyS patients (5–7). Nonetheless, T cell infiltration 

remains exceptionally low in these tumors, suggestive of yet unidentified immune evasion 

mechanisms. 

 

The cellular plasticity (4), stem-like features (9,10), and unique genetics of SyS may explain its 

exceptional ability to escape immune surveillance despite the expression of immunogenic 

antigens. SyS is invariably driven by the SS18-SSX oncoprotein – where the BAF subunit SS18 

is fused to SSX1, SSX2 or, rarely, SSX4 (11). The BAF complex, the mammalian ortholog of 

SWI/SNF, is a major chromatin regulator (11), which has been previously shown to mediate 

resistance to immune checkpoint blockade in melanoma and renal cancer (12,13). SSX genes are 

a family of CTAs involved in transcriptional repression (14–17). The resulting SS18-SSX 

oncoprotein leads to massive dysregulation of the chromatin architecture and transcriptional 

regulation (11,18–20), generating a spectrum of malignant cellular morphologies (4), including 
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epithelial-like malignant cells (in biphasic tumors), suggestive of pluripotential differentiation or 

mesenchymal to epithelial transitions.  

 

Studies of human SyS to date have either relied on bulk tissue (21,22) or on established cellular 

models (11,18,19), masking important aspects of the tumor ecosystem. Moreover, given this 

cancer’s rarity, even concerted efforts, such as TCGA, profiled only limited numbers of tumors 

(21–23). Here, we leveraged single-cell RNA-Seq (scRNA-Seq), imaging, functional 

perturbations, and computational modeling, to study the cancer-immune interplay in SyS. We 

profiled 16,872 cells from 12 human SyS tumors by scRNA-seq and demonstrate that SyS tumors 

invariably include a subpopulation of cells expressing a novel core oncogenic program, associated 

with T cell exclusion. The core oncogenic program is predictive of poor prognosis and is repressed 

by the genetic inhibition of the SS18-SSX fusion, and by cytokines expressed by T cells and 

macrophages in the tumor microenvironment. HDAC1 and CDK6 are a key regulator and target 

of this aggressive cell program, respectively, and their combined inhibition synergistically 

represses it in SyS cells, triggering antigen presentation and cell autonomous immune responses. 

Collectively, our findings demonstrate a strong connection between SyS development and immune 

evasion, and strengthen the notion that de-differentiation, immune evasion, and cell cycle are co-

regulated, such that cellular immunity can be targeted through modulation of cell cycle and 

epigenetic processes. 

 

RESULTS 

Cell type inference from expression and genetic features in scRNA-seq of SyS 
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To comprehensively interrogate the SyS ecosystem, we used full-length (24) and droplet-based 

(25) scRNA-Seq to profile 16,872 high quality malignant, immune, and stromal cells from 12 

human SyS tumors (Fig. 1A,B, Supp. Fig. 1A,B, Supp. Table 1, Methods). We assigned cells to 

different cell types according to both genetic and transcriptional features (Fig. 1B-G, Supp. Fig. 

1, Methods): (1) expression-based clustering and post hoc annotation of non-malignant clusters 

based on canonical cell type markers (Fig. 1C, Supp. Fig. 1A, Supp. Table 2); (2) detection of 

the SS18-SSX fusion transcripts (26) (Fig. 1D); (3) inference of copy number alterations (CNAs) 

from scRNA-Seq profiles (27) (Fig. 1E), which we validated in four tumors by bulk whole-exome 

sequencing (WES) (Fig. 1G); and (4) similarity of cells to bulk expression profiles of SyS tumors 

(Methods) (23) (Fig. 1F). The four approaches were highly congruent (Supp. Fig. 1A). For 

example, the fusion was detected in 58.6% of cells inferred as malignant by other analyses, but 

only in 0.89% of non-malignant cells. Notably, SSX1/2 expression was also very specific to 

malignant cells, with a detection rate of 66.64% and 1.49% in the malignant and non-malignant 

cells, respectively (Supp. Fig. 1A, “SSX1/2 detection”). Similarly, CNAs were detected only in 

cells that were assigned as malignant by the other analyses (Fig. 1E,G), and the SyS similarity 

scores distinguished between malignant and non-malignant cells (as defined by the other methods) 

with 100% accuracy (Fig. 1F, Supp. Fig. 1C). Cells discordant across these criteria (< 0.05%) 

were excluded from all downstream analyses. Notably, in one of the tumors we identified an 

additional malignant-specific fusion between MEOX2 and AGMO (Supp. Fig. 1A).  

 

We assigned the cells to nine subsets (Fig. 1C): malignant cells, non-malignant endothelial cells, 

Cancer Associated Fibroblasts (CAFs), CD8 and CD4 T cells, B cells, Natural Killer (NK) cells, 

macrophages, and mastocytes, and generated signatures for each subset (Supp. Table 2,  Supp. 
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Fig. 1D). Malignant cells primarily grouped by their tumor of origin, while their non-malignant 

counterparts (immune and stroma) grouped primarily by cell type (Fig. 1B,C), as we have 

observed in other tumor types (28–30). The malignant cells of each of the biphasic (BP) tumors 

(SyS1 and SyS12) formed two distinct subsets – epithelial and mesenchymal – which clustered 

together with malignant cells of the other biphasic tumor (Fig. 1B,C, black, cyan and magenta 

dots, Methods). We next focused on characterizing the states of immune cells in SyS. 

 

Evidence of antitumor immune activity despite low immune infiltration 

The lack of effective antitumor immunity in SyS may results from: either the inactivity of immune 

cells, limiting their recognition of or response to SyS malignant cells, or hampered immune cell 

infiltration and recruitment into the tumor parenchyma. To test the first possibility, we examined 

CD8 T cell states (Fig. 2A, Supp. Table 3A), and found clear hallmarks of antitumor immunity 

and recognition. T cell subsets span naïve, cytotoxic, exhausted, and regulatory T cells (Fig. 2B; 

Methods), with evidence of expansion based on TCR reconstruction (31) (showing 57 clones, all 

patient-specific, with shared clones between matched samples from the same patient). While 

cytotoxic and exhaustion markers were generally co-expressed in T cells (Fig. 2B, consistent with 

previous reports (29)), clonally expanded T cells had unique transcriptional features (Methods, 

Supp. Table 3A), suggestive of an effector-like non-exhausted state (Fig. 2B, P < 6.6*10-12, 

mixed-effects). These expanded T cells might respond to SyS-specific CTAs, which were 

specifically expressed in large fractions of the malignant cell populations (Supp. Fig. 2A). 

Moreover, CD8 T cells in SyS have features suggesting they are even more active than those in 

melanoma tumors, where anti-tumor immunity is relatively pronounced. First, compared to CD8 
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T cells from melanoma (32), CD8 T cells in SyS tumors overexpressed a program characterizing 

T cells in tumors that were responsive to immune checkpoint blockade (33) (Fig. 2C bottom, P = 

1.22*10-10, mixed-effects). In addition, compared to melanoma CD8 T cells, the SyS CD8 T cells 

also overexpressed effector and cytotoxic gene modules (34,35) (e.g., GZMB, CX3CR1, P = 

6.36*10-9, mixed-effects), and repressed exhaustion markers (P = 6.36*10-3, mixed-effects), 

including LAYN (34), and multiple checkpoint genes (CTLA4, HAVCR2, LAG3, PDCD1, and 

TIGIT; P = 7.69*10-7, mixed-effects, Fig. 2C, top). 

Other immune cells in the tumor microenvironment also showed features of antitumor immunity. 

Macrophages span M1-like and M2-like states, suggestive of both pro- and anti-inflammatory 

properties, respectively (Supp. Fig. 2B-D; Methods, Supp. Table 3B), and expressed relatively 

high levels of TNF (P = 1.13*10-7, mixed-effects, >4 fold more compared to melanoma 

macrophages). However, mastocytes show regulatory features, with 39% of them expressing PD-

L1 (as opposed to only 2% PD-L1 expressing malignant cells). 

We next examined the alternative hypothesis that T cell abundance might be a limiting factor in 

SyS, despite these favorable T cell states. We compared SyS to 30 other cancer and sarcoma types. 

SyS tumors showed extremely low levels of immune cells, which cannot be explained by variation 

in the mutational load (Fig. 2D; P = 2.58*10-11, mixed effects when conditioning on the tumor 

mutational load), and despite the malignant-cell specific expression of immunogenic CTAs (Supp. 

Fig. 2A). In addition, unlike melanoma (Supp. Fig. 2E, left), T cell levels were not correlated with 

prognosis in SyS (Supp. Fig. 2E, right), indicating that they may not cross the critical threshold 

to impact clinical outcomes. Only mastocytes had a moderate positive association with improved 

prognosis (P = 0.012, Cox regression). These findings suggest that the lack of proper immune cell 
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recruitment and infiltration is a key immune evasion mechanism in SyS, potentially mediated by 

the SyS cells.  

 

Cellular plasticity and a core oncogenic program characterize synovial sarcoma cells 

To identify malignant cell functions that may impact immune cell infiltration, we characterized 

the cellular programs in SyS malignant cells. We identified three co-regulated gene modules, 

which repeatedly appeared across multiple tumors in our cohort (Fig. 3A-D, Supp. Table 4, 

Methods). The first two modules reflected mesenchymal and epithelial cell states (Fig. 3B, Supp. 

Fig. 3A). These differentiation programs included canonical mesenchymal (ZEB1, ZEB2, 

PDGFRA and SNAI2) or epithelial (MUC1 and EPCAM) markers (36,37) (P < 1.55*10-10, 

hypergeometric test), and demonstrated that epithelial cells had a marked increase in antigen 

presentation and interferon (IFN) J responses (P < 8.49*10-6, hypergeometric test).  

Among mesenchymal cells with a relatively low Overall Expression (Methods) of the 

mesenchymal program, one subset also expressed epithelial markers, reminiscent of transitioning 

to/from an epithelial state, while another underexpressed both programs, reminiscent of a poorly 

differentiated state. These poorly differentiated cells were highly enriched with cycling cells (P = 

2.44*10-60, mixed effects), indicating that they might function as the tumor progenitors, fueling 

tumor growth (Fig. 3E,F, Supp. Fig. 3B,C). Diffusion map analysis of the cells based on these 

two programs highlighted putative differentiation trajectories, and found structured differentiation 

patterns only in the biphasic tumors (Fig. 3G, Methods). RNA velocity (38) demonstrated that 

epithelial to mesenchymal transitions may also take place (Supp. Fig. 3D), suggestive of cellular 

plasticity. Further supporting this hypothesis, the post-treatment sample of patient SyS12 includes 
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a new subpopulation of mesenchymal cells, which was absent from the pre-treatment sample, and 

resembles the epithelial cells in terms of its CNAs (Supp. Fig. 3E).  

The third module highlighted a new program present in a subset of cells in each tumor (25.2-84.7% 

per tumor, Fig. 3D,H, Supp. Fig. 4), which we named the core oncogenic program. The program 

is characterized by expression of genes from respiratory carbon metabolism (oxidative 

phosphorylation, citric acid cycle, and carbohydrate/protein metabolism, P < 1*10-8, 

hypergeometric test, Supp. Table 4), and repression of genes involved in TNF signaling, 

apoptosis, p53 signaling, and hypoxia processes (P < 1*10-10, hypergeometric test, Supp. Table 

4), including known tumor suppressors, such as p21 (CDKN1A) and KLF4. The program was 

expressed in a higher proportion of cycling and poorly differentiated cells (P < 2.94*10-4, mixed-

effects, Fig. 3I).  

To test the clinical value of these transcriptional programs, we reanalyzed two independent bulk 

gene expression cohorts (21,22). Both dedifferentiation (Methods) and the core oncogenic 

program were substantially more pronounced in the more aggressive poorly differentiated SyS 

tumors (P < 2.76*10-4, one-sided t-test, Fig. 4A, Methods), and were associated with increased 

risk of metastatic disease (P < 1.36*10-3, Cox regression, Fig. 4B). 

 

The core oncogenic program is associated with the cold phenotype and spatial niche 

Next we turned to explore the connection between the malignant cells’ state and the tumor 

microenvironment and composition. Using our single-cell immune signatures we first estimated 

the composition of bulk SyS tumors in two published cohorts (18,22) and stratified them into “hot” 
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or “cold”, based on their relative inferred proportions of immune cells (Methods). “Hot” tumors 

showed the repression of the core oncogenic program and had significantly higher differentiation 

scores (P < 5.34*10-3, r = -0.44 and 0.48, respectively, partial Pearson correlation, conditioning on 

inferred tumor purity, Methods; Fig. 4C). 

Interestingly, the core oncogenic program shows some degree of similarity to a transcriptional 

signature we recently associated with T cell exclusion in melanoma (32) (P < 7.16*10-10, 

hypergeometric test), although most genes in the program (~92%) were distinct from melanoma. 

Among the overlapping genes we find the induction of the CTA MAGEA4, the BAF complex unit 

SMARCA4, and repression of apoptosis and p53 signaling (e.g., ATF3, JUN, KLF4, and SAT1). 

The melanoma T cell exclusion signature and the synovial sarcoma mesenchymal state also 

overlapped (P = 6.33*10-8, hypergeometric test), for example, in the induction of SNAI2 and 

repression of 23 epithelial genes, including CDH1.  Nevertheless, the programs were largely 

distinct, likely given the different tissues, microenvironments, cell of origin and genetic drivers. 

The association between the core oncogenic program and T cell exclusion is observed in situ in 

the SyS samples from our single-cell cohort. We measured in situ expression of 12 proteins across 

4,310,120 cells in 9 samples using multiplexed immunofluorescence (t-CyCIF) (39) (Fig. 4D,E; 

Methods), and profiled the in situ expression of 1,412 genes in 24 spatially distinct areas in two 

samples using the GeoMx high plex RNA Assay (early version for Next-Generation Sequencing; 

Methods). Both approaches showed that CD45+ immune cells were exceptionally low in SyS 

(<0.4%, compared to >8.7% in melanoma samples (32)). Moreover, the malignant cells in the 

more immune infiltrated areas show a marked decrease in the core oncogenic program (r = -0.53, 

P = 6.9*10-3, Pearson correlation, and P < 1*10-10, mixed effects; Methods). This suggests that the 
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status of the malignant cells and the composition of the tumor microenvironment might be 

interconnected in SyS. 

 

SS18-SSX sustains the core oncogenic program and blocks differentiation 

To decouple the intrinsic and extrinsic factor determining the malignant cell states in SyS we first 

tested whether the core oncogenic and other programs were co-regulated by the genetic fusion 

driving SyS. We depleted SS18-SSX in two SyS cell lines (SYO1 and Aska) using shRNA, and 

profiled 12,263 cells by scRNA-Seq. The fusion knock-down (KD) led to extensive and highly 

consistent transcriptional alterations in both cell lines (Fig. 5A, Supp. Fig. 5A, Supp. Table 5): it 

substantially repressed the core oncogenic program and cell cycle genes (P < 8.05*10-107, t-test, 

Fig. 5A-C), while inducing mesenchymal differentiation programs and markers, including ZEB1 

and VIM (P < 1*10-50, t-test and likelihood-ratio test Fig. 5A,B,). The KD impact on the core 

oncogenic and differentiation programs was decoupled from the repression of cellular proliferation 

(Fig. 5B), such that the impact on the core oncogenic and differentiation programs was observed 

even when controlling for the cycling status of the cells, and when considering only cycling or 

non-cycling cells (P < 1.54*10-13, t-test, Fig. 5B, Methods). Thus, the fusion’s impact on cell cycle 

may be secondary or downstream to its impact on the core oncogenic program. In addition the 

fusion KD led to an induction of antigen presentation and cell autonomous immune responses, 

such as TNF and IFN signaling (P < 1*10-30, mixed-effects, Supp. Fig. 5A). 

Using these SS18-SSX KD experiments we defined an SS18-SSX program, which we then 

stratified to direct and indirect fusion targets based on available SS18-SSX ChIP-Seq profiles (13, 

28) (Methods; Supp. Fig. 5B,C, Supp. Table 5A). According to the SS18-SSX program, the 
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fusion directly dysregulates developmental programs and promotes the core oncogenic program 

(P < 2.51*10-5, hypergeometric test, Methods, Supp. Fig. 5B, Supp. Table 5), while its impact 

on cell cycle genes is mostly indirect (P < 1.2*10-9, hypergeometric test, Supp. Table 5, Supp. 

Fig. 5B) and mediated by cyclin D2 (CCND2) and CDK6 – the only cell cycle genes that are 

members of the direct SS18-SSX program. Taken together, our findings support a model in which 

SS18-SSX directly promotes the core oncogenic program, blocks differentiations, drives cell cycle 

progression, and represses features necessary for immune recognition and recruitment. 

 

TNF and IFNJ synergistically repress the core oncogenic and SS18-SSX programs 

The association between the core oncogenic program and the cold phenotype suggest that the 

program promotes T cell exclusion in SyS. Another (non-mutually exclusive) hypothesis is that, 

despite their low numbers, the immune cells in the tumor microenvironment may nonetheless 

impact the state of the malignant cells, for example, through the secretion of different molecules 

and cytokines. To test this, we implemented a mixed-effects inference approach that uses scRNA-

Seq data to find associations between the expression of secreted molecules and ligands in immune 

cells and the state of the malignant cells (Methods).  

According to this analysis, the expression of IFNJ and TNF specifically from CD8 T cells and 

macrophages, respectively (Fig. 6A), was strongly associated with the repression of the core 

oncogenic program in the malignant cells (P < 9.4*10-39, mixed-effects). We further stratified the 

core oncogenic program to its predicted TNF/IFNJ-dependent and -independent components, by 

the association of each gene’s expression in the malignant cells with the TNF and IFNJ expression 
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levels in the corresponding macrophages and CD8 T cells, respectively (Methods, Supp. Table 

6A). 

To test these predictions, we treated primary SyS cell cultures with TNF and IFNJ, separately and 

in combination, and profiled 1,050 cells by scRNA-Seq. As predicted, combined TNF and IFNJ 

treatment repressed the core oncogenic program (P = 6.66*10-18, mixed-effects, Fig. 6B) in a 

synergistic manner (P = 9.49*10-4, interaction term, mixed-effects). Moreover, the treatment 

repressed the predicted TNF/IFNJ-dependent component of the program (1.6*10-38, mixed-

effects), but not the component predicted to be TNF/IFNJ-independent (P > 0.05, Fig. 6B). The 

combined treatment also repressed the SS18-SSX program (P < 3.12*10-16, both direct and indirect 

components, including TLE1; P = 1.23*10-4 for the interaction term, Fig. 6B, Supp. Table 6B), 

and induced multiple genes from the epithelial program (P = 1.95*10-9, hypergeometric test, Supp. 

Table 6B). Short-term (4-6 hours) treatment with TNF alone substantially repressed homeobox 

genes (e.g., MEOX2, Supp. Table 6C), which are directly bound by SS18-SSX (18,19) (P < 1*10-

17, hypergeometric test). It also repressed the core oncogenic program, but only temporarily (P = 

8.73*10-18, mixed-effects; Supp. Fig. 5D), suggesting that IFNJ is required to sustain the effect. 

Interestingly, TNF also induced TNF expression in the SyS cells (P < 5.57*10-8, mixed-effects), 

suggesting that autocrine signaling might induce the effect. Taken together, these findings 

demonstrate that macrophages and T cells can suppress the SS18-SSX program by secreting TNF 

and IFNJ. 

 

HDAC and CDK4/6 inhibitors synergistically repress the immune resistant features of 

synovial sarcoma cells 
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Lastly, we turned to examine whether pharmacological agents could potentially repress the core 

oncogenic program and induce more immunogenic cell states in SyS cells. Computational 

modeling of the core oncogenic regulatory network (Methods) highlighted the SSX-SS18-

HDAC1 complex (20) as the program’s master regulator (Fig. 6C), and the tumor suppressor 

CDKN1A (p21) as its most repressed target. The latter indicates that the core oncogenic program 

is regulating, rather than regulated by, cell cycle genes through the p21-CDK2/4/6 axis, potentially 

reinforcing the direct induction of cyclin D and CDK6 by SS18-SSX (Fig. 6C,D). According to 

this model (Fig. 6D), modulators of cell cycle (e.g., CDK4/6 inhibitors) and SS18-SSX (e.g., 

HDAC inhibitors) could synergistically target the immune resistance features of SyS cells, 

especially in the presence of tumor microenvironment cytokines as TNF. 

To test these predictions, we treated SyS lines and primary mesenchymal stem cells (MSCs) with 

low doses of HDAC and CDK4/6 inhibitors, in order to avoid global toxicity-related effects, and 

examined their impact on the transcriptional state of the cells. As predicted, the HDAC inhibitor 

panobinostat markedly repressed the core oncogenic program (P = 3.34*10-14, mixed-effects; Fig. 

7A) and selectively induced CDKN1A in SyS cells (P = 2.13*10-8) (Supp. Fig. 6A). Panobinostat 

also repressed the SS18-SSX program (P = 5.32*10-72; Fig. 7B), decreased the expression of cell 

cycle genes (P < 1.78*10-20), and induced an immunogenic phenotype (32) with enhanced antigen 

presentation and IFNJ responses (P < 9.53*10-31; Fig. 7C,D, Supp. Fig. 6B,C). The CDK4/6 

inhibitor abemaciclib repressed cell cycle gene expression (P = 3.63*10-8), without impacting the 

core oncogenic program (P > 0.1; Fig. 7A), supporting the notion that cell cycle regulation is 

down-stream of the core oncogenic program. Lastly, a low dose combination of panobinostat, 

abemaciclib and TNF synergistically repressed the core oncogenic program (P = 1.72*10-37, Fig. 

7A, Supp. Fig. 6A) and multiple immune resistant features, while inducing antigen presentation, 
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IFN responses, and induced-self antigens as MICA/B (P = 3.12*10-76; Fig. 7C,D, Supp. Fig. 

6B,C). It also repressed MIF (Macrophage Migration Inhibitory Factor), a member of the core 

oncogenic and SS18-SSX programs, which has been previously shown to hamper T cell 

recruitment into the tumor (40). The effect of the drug combination on these programs and genes 

in viable SyS cells significantly exceeded the expected additive effect (P < 0.01, mixed-effects 

interaction term, Methods), and could potentially help both T cells (MHC-1) and NK cells 

(MICA/B) bind to and eliminate SyS cell. Consistent with the transcriptional changes, the drug 

combination displayed a significantly higher detrimental effect on the SyS cells compared to 

primary MSCs (P = 5.7*10-13; Fig. 7E,F).  

 

DISCUSSION 

Here, we mapped malignant and immune cell states and interactions in human SyS tumors, through 

integrative analyses of clinical and functional data. Out data reveals active antitumor immunity in 

this relatively cold tumor, alongside malignant cellular plasticity and immune excluding features, 

centered around a core oncogenic program. This program is regulated by the tumor’s primary 

genetic driver and may hamper proper immune recruitment and infiltration. Nonetheless, immune 

cells can impact the malignant cells through TNF and IFNJ secretion, counteracting the 

transcriptional alterations induced by the oncoprotein. Targeting the oncogenic program and its 

downstream effects with HDAC and CDK4/6 inhibitors induced cell autonomous immune 

responses, repressed immune resistant features, and was selectively detrimental to SyS cells. 

The metabolic features of the core oncogenic program may also impact the tumor 

microenvironment. Supporting this notion, recent studies have shown that malignant cells use 
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oxidative phosphorylation to create a hypoxic niche and promote T cell dysfunction (41). These 

metabolic features might reflect the conserved role of the SWI/SNF complex in regulating carbon 

metabolism and sucrose non-fermenting phenotypes in the yeast Saccharomyces cerevisiae (42). 

These connections might generalize to other cancer types, as mutations in the BAF complex have 

been recently shown to induce a targetable dependency on oxidative phosphorylation in lung 

cancer (43). 

Despite the extremely cold phenotypes displayed by SyS (Fig. 2D), expanded effector T cells are 

present in SyS tumors (Fig. 2B,C), potentially responding to the CTAs expressed specifically in 

the malignant cells, including NY-ESO-1 and PRAME (Supp. Fig. 2A). Consistently, vaccines 

triggering dendritic-cells to prime NY-ESO-1 specific T cells can lead to durable responses in SyS 

patients (7), further supporting the notion that SyS immune evasion operates primarily through 

impaired T cell or dendritic cell recruitment (44). The latter may also be mediated through Wnt/β-

catenin signaling pathway, which has been previously shown to interfere with CD8 T cell 

recruitment to tumors by dendritic cells (44), and is indeed active in all the malignant SyS cells 

and directly induced by SS18-SSX (Supp. Fig. 5B, Supplementary Tables 2, 6). The core 

oncogenic program itself includes several CTAs, linking between malignant immune evasion and 

testicular immune privileges.  

While the core oncogenic program shares some similar features with a T cell exclusion program 

we recently identified in melanoma (32), there are also substantial distinctions between the two 

programs, and >90% do not overlap between the two, likely reflecting the dramatic differences in 

driving events, cell of origin and tissue environment of the two tumors. This emphasizes the 

importance of understanding immune evasion for each tumor context. In particular, unlike the 

melanoma program, the core oncogenic program highlights a metabolic shift and is strongly 
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connected to the genetic driver. In SyS tumors (but not in melanoma) we successfully decoupled, 

through computational inference, the intrinsic and extrinsic signals which modulate this 

transcriptional program, facilitating the reconstruction of multicellular circuits. This new approach 

revealed a bi-directional interaction between malignant and immune cells where CD8 T cells and 

macrophages can in turn repress the core oncogenic program through the secretion of TNF and 

IFNJ. Thus, beyond their direct cytotoxic activity, immune cells can alleviate some of the 

aggressive features of SyS cells through cytokine secretion, targeting also malignant cells with 

repressed antigen presentation or unrecognized epitopes. 

Our findings also demonstrate that immune resistance, metabolic processes, cell cycle and de-

differentiation are tightly co-regulated in SyS. Hence, certain targeted therapies may be able to 

sensitize the tumor to immune surveillance. Supporting this notion, we demonstrate that the 

combined inhibition of HDAC and CDK4/6, two known repressors of SS18-SSX (45,46) and 

cellular proliferation (47), respectively, trigger immunogenic cell states even at sub-cytotoxic 

doses. This combinatorial treatment is also selectively cytotoxic to SyS cells, consistent with 

previous reports where HDAC and CDK4/6 inhibitors were used separately to induce cell death in 

SyS (45,47). The basal antitumor immune response we report, and the ability of T cells and 

macrophages to repress the core oncogenic and SS18-SSX programs support the potential of 

exploiting HDAC and CDK4/6 inhibitors together with immunotherapy. 

Taken together, our study comprehensively maps and interrogates cell states in SyS and its 

surrounding tumor microenvironment, along with their multicellular regulatory circuits and 

clinical implications. We demonstrated that the SS18-SSX oncoprotein and the tumor 

microenvironment coordinately shape cell states in SyS, resulting in the establishment of an 

immune privileged environment (Fig. 7G). The possibility to selectively target the underlying 
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mechanisms to reverse immune evasion offers a new perspective for the clinical management of 

SyS, and potentially other malignancies driven by similar genetic events. 
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FIGURE LEGENDS  

Figure 1. A single-cell map of the cellular ecosystem of synovial sarcoma tumors. (a) Study 

workflow. (b-e) Consistent assignment of cell identity. t-SNE plots of scRNA-Seq profiles (dots), 

colored by either (b) tumor sample, (c) inferred cell type, (d) SS18-SSX1/2 fusion detection, (e) 

CNA detection, and (f) differential similarity to SyS compared to other sarcomas (Methods). 

Dashed ovals (b): mesenchymal and epithelial malignant subpopulations of biphasic (BP) tumors 

or poorly differentiated (PD) tumor. (g) Inferred large-scale CNAs distinguish malignant (top) 

from non-malignant (bottom) cells, and are concordant with WES data (bold). The CNAs (red: 

amplifications, blue: deletions) are shown along the chromosomes (x axis) for each cell (y axis).  
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Figure 2. SyS tumors manifest antitumor immunity with limited immune infiltration. (a) 

Immune and stroma cells in SyS tumors. t-SNE of immune and stroma cell profiles (dots), colored 

by inferred cell type (left) or sample (right). (b) The CD8 T cell expansion program is associated 

with particularly high cytotoxicity and lower than expected exhaustion. The cytotoxicity (x axis) 

and exhaustion (y axis) scores of SyS CD8 T cells, colored by the score of the T cell expansion 

program (Methods). (c) CD8 T cells in SyS (orange) have higher effector programs than in 

melanoma (green). Distribution of effector vs. exhaustion scores (x axis, top, Methods) or an 

immune checkpoint blockade responsiveness program (33) (x axis, bottom, Methods) in CD8 T 

cells from each cancer type. (d) SyS tumors manifest a particularly cold phenotype. Overall 

Expression of the immune cell signatures (y axis, Methods) in SyS tumors (orange) and other 

cancer types (left panel) or other sarcomas (right panel).  
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Figure 3. Cellular plasticity and a core oncogenic program characterize synovial sarcoma 

cells. (a-d) De-differentiation, cell cycle, and the core oncogenic programs across malignant cells. 

t-SNE plots of malignant cell profiles (dots), colored by: (a) sample, (b) Overall Expression of the 

epithelial vs. mesenchymal differentiation program, (c) cell cycle status, or (d) Overall Expression 

of the core oncogenic program. Dashed ovals (a): mesenchymal and epithelial malignant 

subpopulations of biphasic (BP) tumors or poorly differentiated (PD) tumor. (e,f) Association 

between cell cycle and poor differentiation. (e) G1/S (x axis) and G2/M (y axis) phase signature 

scores for each cell. (f) Epithelial and mesenchymal-like differentiation. Scatter plots of the 

malignant cells’ (dots) scores for the epithelial vs. mesenchymal program (x axis) and for overall 

differentiation (y axis). Color: expression of cell cycle program (see also Supp. Fig. 3B,C). (g) 

Distinct differentiation pattern in biphasic tumors. Single cell profiles dots arranged by the first 

two diffusion-map components (DCs) for representative examples of a biphasic (SyS12, left) and 

monophasic (SyS11, right) tumors, and colored by the Overall Expression of the epithelial vs. 

mesenchymal programs (colorbar). (h) Core oncogenic program genes. Normalized expression 

(centered TPM values, colorbar) of the top 100 genes in the core oncogenic program (columns) 

across the malignant cells (rows), sorted according to the Overall Expression of the program (bar 

plot, right). Leftmost color bars: biphasic tumor and sample ID. (i) The program is expressed in a 

higher proportion of cycling and poorly differentiated cells. Fraction of malignant cells (y axis) 

with a high (above median, black) and low (below median, blue) Overall Expression of the core 

oncogenic program, in cells stratified by cycling and differentiation status (x axis).   
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Figure 4. The core oncogenic program and de-differentiation co-vary within and across 

tumors and are associated with aggressive and cold tumors. (a) The core-oncogenic program 

and de-differentiation mark the aggressive poorly differentiated (PD) subtype. Overall expression 

of the core oncogenic or differentiation (both mesenchymal and epithelial) programs scores (y 

axis) across 34 SyS tumors (21), stratified as biphasic (BP), monophasic (MP), or poorly 

differentiated (PD) (x axis). Middle line: median; box edges: 25th and 75th percentiles, whiskers: most 

extreme points that do not exceed ±IQR*1.5; further outliers are marked individually. (b) The core 

oncogenic program and differentiation scores (overall expression of both differentiation programs) 

are predictive of metastatic disease in an independent cohort of 58 SyS patients (22). Kaplan-Meier 

(KM) curves of metastasis free survival (x axis, years), when stratifying the patients by high (top 

25%), low (bottom 25%), or intermediate (remainder) expression of the respective program. P: 

COX regression p-value; Pc: COX regression p-value when controlling for fusion type and patient 

age group. (c) Inferred level of immune cell types is associated with the malignant programs in 

bulk SyS tumors, when controlling for tumor purity. Partial correlation (colorbar) between the 

inferred level of each immune subset (rows) and the core oncogenic and differentiation levels 

(columns). (d-e) In situ validation of programs. Detection of core oncogenic (Hsp90, c-Jun and 

EGR1), epithelial (E-cadherin) and mesenchymal (Vimentin) markers, using immunofluorescence 

(t-CyCIF) (d) and in situ hybridization (ISH) (e). 

  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2019. ; https://doi.org/10.1101/724302doi: bioRxiv preprint 

https://doi.org/10.1101/724302
http://creativecommons.org/licenses/by/4.0/


 24 

Figure 5. The genetic driver promotes the core oncogenic program in malignant SyS cells. 

(a-c) SS18-SSX sustains the core oncogenic, cell cycle, and dedifferentiation programs. (a) 

scRNA-Seq following KD of SS18-SSX. Co-embedding (using PCA and canonical correlation 

analyses (48), Methods) of Aska and SYO1 cell profiles (dots), colored by: (1) cell line and 

perturbation; or the Overall Expression (colorbar) of the (2) cell cycle, (3) core oncogenic, or (4) 

mesenchymal differentiation (36,37) programs. (b) SS18-SSX KD represses the core oncogenic 

program and induces the mesenchymal differentiation program irrespective of its repression of the 

cell cycle program. Distribution of Overall Expression scores (y axis) for each program in control 

(blue) and shSSX (grey) cells, for each cell line, where core oncogenic and mesenchymal program 

scores are shown separately for cycling and non-cycling cells. (c) Overlap of SS18-SSX and core 

oncogenic programs. Expression (centered TPM) of genes (rows) shared between the fusion and 

core oncogenic programs across the Aska and SYO1 cells (columns), with a control (shCt) or SSX 

(shSSX) shRNA. Cells are ordered by the Overall Expression of the SS18-SSX program (bottom 

plot) and labeled by type and condition (Color bar, top).  
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Figure 6. The immune cells and the genetic driver form two opposing forces in shaping SyS 

cell states. (a,b) TNF and IFNJ are expressed by immune cells in the tumor microenvironment 

and can repress the core oncogenic program. (a) TNF and IFNJ are detected primarily in 

macrophages and T cells, respectively. Fraction of cell (y axis) of each subset in the tumor (x axis) 

that express (black) IFNJ (left) or TNF (right) by scRNA-seq. (b) TNF and IFNJ  repress the core 

oncogenic and SS18-SSX programs (see also Supp. Fig. 5D). Distribution of Overall Expression 

score (y axis) of the core oncogenic (also stratified to its predicted and TNF/IFNJ-dependent and 

-independent components) and SS18-SSX programs (x axis) in control (blue) and TNF + IFNJ 

treated cells. (c) Gene regulatory model of control of the core oncogenic program by SS18-SSX. 

Red/green: genes that are induced/repressed in the core oncogenic program. Grey: genes that are 

repressed in the core oncogenic program and directly repressed by HDAC1-SS18-SSX (20). Red 

blunt arrows: repression; black pointy arrows: activation. Thick edges represent paths from SS18-

SSX to p21. (d) Model of regulation and intervention in the core oncogenic program. SS18-SSX 

activates the core oncogenic program in an HDAC-dependent manner and promotes cell cycle 

through direct activation of CDK6 and CCND2 (CycD) transcription. The core program suppresses 

p21 and inhibits immunogenic features. HDAC and CDK6 inhibitors target SyS dependencies.   
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Figure 7. The core oncogenic program can be selectively blocked in SyS cells by combined 

HDAC and CDK4/6 inhibitors. (a-d) TNF, HDAC and CDK6 inhibitors suppress the core 

oncogenic program. Overall Expression of the core oncogenic program (a), SS18-SSX program 

(b), an immune resistance program identified in melanoma (32) (c), and MHC-1 genes (d) in SyS 

cells and MSCs (x axis). (A-D) *P<0.1,**P<0.01, ***P<1*10-3, ****P<1*10-4, t-test. (e,f) Selective 

toxicity for SyS cell lines. (e) Viability (y axis) of SyS cell lines and MSCs (x axis) under different 

drugs (x axis, *P<5*10-2, **P<5*10-3, ***P<5*10-4, ANOVA test). (f) Selective toxicity to SyS lines 

vs. MSC (y axis, -log10(P-value), ANOVA) in each treatment (x axis). In (A-E) middle line: median; 

box edges: 25th and 75th percentiles, whiskers: most extreme points that do not exceed ±IQR*1.5; 

further outliers are marked individually. (g) Model of intrinsic and microenvironment determinants 

of SyS cell states. Left: The SS18-SSX oncoprotein sustains de-differentiation, proliferation and 

the core oncogenic program. Right: immune cells in the tumor microenvironment can repress the 

core oncogenic and SS18-SSX programs through TNF and IFNJ secretion. Combined inhibition 

of HDAC and CDK4/6 mimics these effects selectively in SyS cells. 
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METHODS 

Human tumor specimen collection and dissociation 

Patients at Massachusetts General Hospital and University Hospital of Lausanne were consented 

preoperatively in all cases according to their respective Institutional Review Boards (protocol 

numbers: CER-VD 260/15, DF/HCC 13-416). Fresh tumors were collected directly from the 

operating room at the time of surgery and presence of malignancy was confirmed by frozen section. 

Tumor tissues were mechanically and enzymatically dissociated using a human tumor dissociation 

kit (Miltenyi Biotec, Cat. No. 130-095-929), following the manufacturers recommendations. 

Clinical annotations are provided in Supp. Table 1. 

Fluorescence-activated cell sorting (FACS) 

Tumor cells were kept in Phosphate Buffered Saline with 1% bovine serum albumin (PBS/BSA) 

while staining. Cells were stained using calcein AM (Life Technologies) and TO-PRO-3 iodide 

(Life Technologies) to identify viable cells. For all tumors, we used CD45-VioBlue (human 

antibody, clone REA747, Miltenyi Biotec) to identify immune cells and in few cases, we also used 

CD3-PE to specifically identify lymphocytes (human antibody, clone BW264/56, Miltenyi 

Biotec). For all the samples, we used unstained cells as control. Standard, strict forward scatter 

height versus area criteria were used to discriminate doublets and gate only single cells. Viable 

single cells were identified as calcein AM positive and TO-PRO-3 negative. Sorting was 

performed with the FACS Aria Fusion Special Order System (Becton Dickinson) using 488nm 

(calcein AM, 530/30 filter), 640nm (TO-PRO-3, 670/14 filter), 405nm (CD45-VioBlue, 450/50 

filter) and 561nm (PE, 586/15 filter) lasers. We sorted individual, viable, immune and non-immune 

single cells into 96-well plates containing TCL buffer (Qiagen) with 1% beta-mercaptoethanol. 

Plates were snap frozen on dry ice right after sorting and stored at -80°C prior to whole 

transcriptome amplification, library preparation and sequencing.  

Library construction and sequencing 

For plate-based scRNA-seq, Whole transcriptome amplification was performed using the 

SMART-seq2 protocol (24), with some modifications as previously described (30,49,50). The 

Nextera XT Library Prep kit (Illumina) was used for library preparation, with custom barcode 
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adapters (sequences available upon request). Libraries from 384 to 768 cells with unique barcodes 

were combined and sequenced using a NextSeq 500 sequencer (Illumina). 

In addition to SMART-seq2, cells from three samples (SS12pT, SS13 and SS14) were also 

sequenced using droplet-based scRNA-Seq with the 10x genomics platform. The samples were 

partitioned for SMART-seq2 and 10x genomics after dissociation. For each tumor, approximately 

two thirds of the sample was used for SMART-seq2 and one third for droplet based scRNA-seq 

(10x genomics). We sorted viable cells using MACS (Dead Cell Removal Kit, Miltenyi Biotec) 

and ran up to 2 channels per sample with a targeted number of cell recovery of 2,000 cells per 

channel. The samples were processed using the 10x Genomics Chromium 3' Gene Expression 

Solution (version 2) based on manufacturer instructions and sequenced using a NextSeq 500 

sequencer (Illumina). 

Whole exome sequencing (WES) 

DNA and RNA were extracted from fresh frozen tissue or Formalin-Fixed Paraffin-Embedded 

(FFPE) blocks for each patient (obtained according to their respective Institutional Review Board-

approved protocols) using the AllPrep DNA/RNA extraction kit (Qiagen). We used tumor tissue 

and matched normal muscle tissue from the same patient as reference. Library construction was 

performed as previously described (50), with the following modifications: initial genomic DNA 

input into shearing was reduced from 3µg to 20-250ng in 50µL of solution. For adapter ligation, 

Illumina paired end adapters were replaced with palindromic forked adapters, purchased from 

Integrated DNA Technologies, with unique dual-indexed molecular barcode sequences to facilitate 

downstream pooling. Kapa HyperPrep reagents in 96-reaction kit format were used for end 

repair/A-tailing, adapter ligation, and library enrichment PCR. In addition, during the post-

enrichment SPRI cleanup, elution volume was reduced to 30µL to maximize library concentration, 

and a vortexing step was added to maximize the amount of template eluted. After library 

construction, libraries were pooled into groups of up to 96 samples. Hybridization and capture 

were performed using the relevant components of Illumina's Nextera Exome Kit and following the 

manufacturer’s suggested protocol, with the following exceptions: first, all libraries within a 

library construction plate were pooled prior to hybridization. Second, the Midi plate from 

Illumina’s Nextera Exome Kit was replaced with a skirted PCR plate to facilitate automation. All 
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hybridization and capture steps were automated on the Agilent Bravo liquid handling system. After 

post-capture enrichment, library pools were quantified using qPCR (automated assay on the 

Agilent Bravo), using a kit purchased from KAPA Biosystems with probes specific to the ends of 

the adapters. Based on qPCR quantification, libraries were normalized to 2nM. Cluster 

amplification of DNA libraries was performed according to the manufacturer’s protocol 

(Illumina), using exclusion amplification chemistry and flowcells. Flowcells were sequenced using 

Sequencing-by-Synthesis chemistry. The flowcells are then analyzed using RTA v.2.7.3 or later. 

Each pool of whole exome libraries was sequenced on paired 76 cycle runs with two 8 cycle index 

reads across the number of lanes needed to meet coverage for all libraries in the pool. 

In situ immunofluorescence imaging 

Formalin-fixed, paraffin-embedded (FFPE) tissue slides, 5 µm in thickness, were generated at the 

at the Massachusetts General Hospital from tissue blocks collected from patients under IRB-

approved protocols (DF/HCC 13-416). Multiplexed, tissue cyclic immunofluorescence (t-CyCIF) 

was performed as described recently (51). For direct immunofluorescence, we used the following 

antibodies (manufacturer, clone, dilution): c-Jun-Alexa-488 (Abcam, Clone E254, 1:200), CD45-

PE (R&D, Clone 2D1, 1:150), p21-Alexa-647 (CST, Clone 12D1, 1:200), Hes1-Alexa-488 

(Abcam, Clone EPR4226, 1:500), FoxP3-Alexa-570 (eBioscience, Clone 236A/E7, 1:150), NF-

κB (Abcam, Clone E379, 1:200), E-Cadherin-Alexa-488 (CST, Clone 24E10, 1:400), pRB-Alexa-

555 (CST, Clone D20B12, 1:300), COXIV-Alexa-647 (CST, Clone 3E11, 1:300), β-catenin-

Aleaxa-488 (CST, Clone L54E2, 1:400), HSP90-PE (Abcam, polyclonal, lot# GR3201402-2, 

1:500) and vimentin-Alexa-647 (CST, Clone D21H3, 1:200). Stained slides from each round of t-

CyCIF were imaged with a CyteFinder slide scanning fluorescence microscope (RareCyte Inc. 

Seattle WA) using either a 10X (NA=0.3) or 40X long-working distance objective (NA = 0.6). 

Imager5 software (RareCyte Inc.) was used to sequentially scan the region of interest in 4 

fluorescence channels. Image processing, background subtraction, image registration, single-cell 

segmentation and quantification were performed as previously described (51).  

RNA in situ hybridization 

Paraffin-embedded tissue sections from human tumors from Massachusetts General Hospital and 

and University Hospital of Lausanne were obtained according to their respective Institutional 
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Review Board-approved protocols. Sections were mounted on glass slides and stored at -80°C. 

Slides were stained using the RNAscope 2.5 HD Duplex Detection Kit (Advanced Cell 

Technologies, Cat. No. 322430), as previously described (30,49,52): slides were baked for 1 hour 

at 60°C, deparaffinized and dehydrated with xylene and ethanol. The tissue was pretreated with 

RNAscope Hydrogen Peroxide (Cat. No. 322335) for 10 minutes at room temperature and 

RNAscope Target Retrieval Reagent (Cat. No. 322000) for 15 minutes at 98°C. RNAscope 

Protease Plus (Cat. No. 322331) was then applied to the tissue for 30 minutes at 40°C. 

Hybridization probes were prepared by diluting the C2 probe (red) 1:50 into the C1 probe (green). 

Advanced Cell Technologies RNAscope Target Probes used included Hs-EGR1 (Cat. No. 457671-

C2) and Hs-IGF2 (Cat. No. 594361). Probes were added to the tissue and hybridized for 2 hours 

at 40°C. A series of 10 amplification steps was performed using instructions and reagents provided 

in the RNAscope 2.5 HD Duplex Detection Kit. Tissue was counterstained with Gill’s hematoxylin 

for 25 seconds at room temperature followed by mounting with VectaMount mounting media 

(Vector Laboratories). 

RNA profiling in situ hybridization (ISH) 

DNA oligo probes were designed to bind mRNA targets. From 5’ to 3’, they each comprised of a 

35-50 nt target complementary sequence, a UV photocleavable linker, and a 66 nt indexing oligo 

sequence containing a unique molecular identifier (UMI), RNA ID sequence, and primer binding 

sites. Up to 10 RNA detection probes were designed per target mRNA.  RNA detection probes 

were provided by Nanostring Technologies. 

To perform the ISH, 5 µm FFPE tissue sections from two patients were mounted on positively 

charged histology slides.  Sections were baked at 65⁰C for 45 minutes in a Hyb EZ II hybridization 

oven (Advanced cell Diagnostics, Inc).  Slides were deparaffinized using Citrsolv (Decon Labs, 

Inc., 1601), rehydrated in an ethanol gradient, and washed in 1x phosphate-buffered saline pH 7.4 

(PBS: Invitrogen, AM9625).  Slides were incubated for 15 minutes in 1X Tris-EDTA pH 9.0 buffer 

(Sigma Aldrich, SRE0063) at 100°C with low pressure in a TintoRetriever Pressure cooker (bioSB, 

7008). Slides were washed, then incubated in 1 µg/mL proteinase K (Thermo Fisher Scientific, 

AM2546) in PBS for 15 minutes at 37°C and washed again in PBS. Tissues were then fixed in 

10% neutral-buffered formalin (Thermo Fisher Scientific, 15740) for 5 minutes, incubated in NBF 
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stop buffer (0.1M Tris Base, 0.1M Glycine, Sigma) for 5 minutes twice, then washed for 5 minutes 

in PBS. Tissues were then incubated overnight at 37°C with GeoMx™ RNA detection probes in 

Buffer R (Nanostring Technologies) using a Hyb EZ II hybridization oven (Advanced cell 

Diagnostics, Inc). During incubation, slides were covered with HybriSlip Hybridization Covers 

(Grace BioLabs, 714022). Following incubation, HybriSlip covers were gently removed and 25-

minute stringent washes were performed twice in 50% formamide and 2X SSC at 37°C. Tissues 

were washed for 5 minutes in 2X SSC then blocked in Buffer W (Nanostring Technologies) for 

30 minutes at room temperature in a humidity chamber.  500nM Syto13 and antibodies targeting 

PanCK and CD45 (Nanostring technologies) in Buffer W were applied to each section for 1 hour 

at room temperature.  Slides were washed twice in fresh 2X SSC then loaded on the GeoMx™ 

Digital Spatial Profiler (DSP) (53).   In brief, entire slides were imaged at 20x magnification and 

12 circular regions of interest (ROI) with 200-300 μm diameter were selected per sample.  The 

DSP then exposed ROIs to 385 nm light (UV) releasing the indexing oligos and collecting them 

with a microcapillary.  Indexing oligos were then deposited in a 96-well plate for subsequent 

processing. The indexing oligos were dried down overnight and resuspended in 10 μL of DEPC-

treated water. 

Sequencing libraries were generated by PCR from the photo-released indexing oligos and ROI-

specific Illumina adapter sequences and unique i5 and i7 sample indices were added.  Each PCR 

reaction used 4 μL of indexing oligos, 1 μL of indexing PCR primers, 2 μL of Nanostring 5X PCR 

Master Mix, and 3 μL PCR-grade water.  Thermocycling conditions were 37°C for 30 min, 50°C 

for 10 min, 95°C for 3 min; 18 cycles of 95°C for 15sec, 65°C for 1min, 68°C for 30 sec; and 68°C 

5 min.  PCR reactions were pooled and purified twice using AMPure XP beads (Beckman Coulter, 

A63881) according to manufacturer’s protocol.  Pooled libraries were sequenced at 2x75 base pairs 

and with the single-index workflow  on an Illumina NextSeq to generate 458M raw reads. 

Primary cell cultures and cell lines 

Human primary Synovial Sarcoma (SyS) spherogenic cultures (SScul1, SScul2 and SScul3) were 

derived from patients undergoing surgery at Massachusetts General Hospital and University 

Hospital of Lausanne, according to their respective Institutional Review Board-approved 

protocols. Directly after dissociation (as above), the dissociated bulk tumor cells were put in 
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culture and grown as spheres using ultra-low attachment cell culture flasks in IMDM 80% (Gibco, 

Cat. No. 1244053), Knock-Out Serum Replacement 20% (Gibco, Cat. No. 10828028), 

Recombinant Human EGF Protein 10 ng/mL (R&D systems, Cat. No. 236-EG-200), Recombinant 

Human FGF basic, 145 aa (TC Grade) Protein 10ng/mL (R&D systems, Cat. No. 4114-TC-01M) 

and 1% Penicillin-Streptomycin (Gibco, Cat. No. 15140122). Cells were expanded by mechanical 

and enzymatical dissociation every week using TrypLE Express Enzyme (ThermoFisher, Cat. No. 

12605010).  

The SyS cell lines used for the SS18-SSX KD experiments and the functional drug assays include: 

Aska (a generous gift from Kazuyuki Itoh, Norifumi Naka, and Satoshi Takenaka, Osaka 

University, Japan), SYO1 (a generous gift from Akira Kawai, National Cancer Center Hospital, 

Japan), and HS-SY-II (purchased from RIKEN Bio Resource Center, 3-1-1 Koyadai, Tsukuba, 

Ibaraki 305-0074, Japan). All three cell lines were cultured using standard protocols in DMEM 

medium (Gibco) supplemented with 10-20% fetal bovine serum, 1% Glutamax (Gibco), 1% 

Sodium Pyruvate (Gibco) and 1% Penicillin-Streptomycin (Gibco) and grown in a humidified 

incubator at 37°C with 5% CO2.  

Human primary pediatric Mesenchymal Stem Cells (MSCs) were isolated from healthy donors 

undergoing corrective surgery in agreement with the Institutional Review Board-approved 

protocol of the University Hospital of Lausanne (Protocol number 2017-0100). Samples were 

deidentified prior to culture and analysis. Cells were expanded in 90% IMDM (Gibco, Cat. No. 

1244053) containing 10% Fetal Bovine Serum (Gibco), 1% Penicillin-Streptomycin (Gibco) and 

10ng/mL Platelet-Derived Growth Factor BB (PDGF-BB, PeproTech) as previously described 

(54). 

SS18-SSX knockdown in Aska and SYO1 cell lines  

The SyS cell lines Aska and SYO1 were cultured using standard protocols in DMEM medium 

(Gibco) supplemented with 10-20% fetal bovine serum, 1% Glutamax (Gibco), 1% Sodium 

Pyruvate (Gibco) and 1% Penicillin-Streptomycin (Gibco) and grown in a humidified incubator at 

37°C with 5% CO2. Cells expressing a pLKO.1 vector with a scrambled shRNA hairpin control 

(5’- CCTAAGGTTAAGTCGCCCTCGCTCGAGCGAGGGCGACTTAAC CTTAGG-3’) or a 

shSSX hairpin targeting SSX of the SS18-SSX fusion (5’-CAGTCACTGACAGTTAATAAA-3’) 
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were prepared by lentiviral infection. Briefly, lentivirus was prepared by transfection of HEK293T 

cells with gene delivery vector and the packaging vectors pspax2 and pMD2.G, filtration of media 

followed by ultracentrifugation, and then resuspension of viral pellet in PBS. Aska and SYO1 cells 

were infected with lentivirus for 48 hours and then underwent 5 days of selection with puromycin 

(2 μg/mL) prior to collection for scRNA-seq. 

In vitro IFN/TNF experiment 

Cells were dissociated 12 hours before adding the drugs at the concentrations indicated directly to 

the growing media and cells were collected at different time point (ranging from 4 hours to 4 days) 

for SMART-seq2. Viability was determined by CellTiter-Glo Luminescent Cell Viability Assay 

(Promega) after 5 to 7 days of treatment. TNF-alpha (Miltenyi Biotec, Human TNF-α, Cat. No. 

130-094-014) IFN-gamma (R&D systems, Recombinant Human IFN-gamma Protein, Cat. No. 

285-IF-100) were suspended in deionized sterile-filtered water.  

In vitro drug assay and cell proliferation measurements 

For the functional drug assay, 200,000 SYO-1 cells and HSSYII cells, and 100,000 MSCs were 

seeded in 60 x 15 mm plates (Falcon). Cells were stimulated for five days with the following 

compounds: 100 or 200 nM Abemaciclib (Selleckchem, U.S.A.), 15 or 30 ng/ml TNF (Miltenyi 

Biotech, Germany) or a combination of the two. Compounds were refreshed at days three and four, 

and the solvent (DMSO) was used as control. At day 4, 12.5 or 25 nM Panobinostat (Selleckchem, 

U.S.A.) was added to the cultures, and the cells were harvested 24 hours later for proliferation 

scoring. To assessment cellular proliferation, cells were detached with trypsin, washed in PBS, 

and re-suspended in 1 ml of complete medium. After diluting 1:2 with Trypan blue (Invitrogen) 

viable cells were counted using the Automated Cell Counter Countess II FL (Thermo Fisher 

Scientific). Each experimental condition was measured in triplicate. 
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scRNA-seq pre-processing and gene expression quantification  

BAM files were converted to merged, demultiplexed FASTQ files. The paired-end reads obtained 

with SMART-Seq2 were mapped to the UCSC hg19 human transcriptome using Bowtie (55), and 

transcript-per-million (TPM) values were calculated with RSEM v1.2.8 in paired-end mode (56). 

The paired-end reads obtained with droplet scRNA-Seq (10x Genomics) were mapped to the 

UCSC hg19 human transcriptome using STAR (57), and gene counts/TPM values were obtained 

using CellRanger (cellranger-2.1.0, 10x Genomics). 

For bulk RNA-Seq, expression levels were quantified as E=log2(TPM+1). For scRNA-seq data, 

expression levels were quantified as E=log2(TPMi,j/10+1). TPM values were divided by 10 

because the complexity of our single-cell libraries is estimated to be within the order of 100,000 

transcripts (52). The 10-1 factoring prevents counting each transcript ~10 times and 

overestimating differences between positive and zero TPM values. The average expression of a 

gene i across a population P of N cells, was defined as 

Ei,P = log2 (1 +
∑ TPMi,jj∈P

N ) 

For each cell, we quantified the number of genes with at least one mapped read, and the average 

expression level of a curated list of housekeeping genes (58). We excluded all cells with either 

fewer than 1,700 detected genes or an average housekeeping expression (E, as defined above) 

below 3 (Supp. Table 1). For the remaining cells, we calculated the average expression of each 

gene (Ep), and excluded genes with an average expression below 4, which defined a different set 

of genes in different analyses depending on the subset of cells included. In cases where we 

analyzed different cell subsets together, we removed genes only if they had an average Ep below 

4 in each of the different cell subsets included in the analysis. Different cell types and malignant 

cells from different tumors were considered as different cell subsets in this regard. 

WES data pre-processing 

A BAM file was produced with the Picard pipeline (http://picard.sourceforge.net/), which aligns 

the tumor and normal sequences to the hg19 human genome build using Illumina sequencing 

reads. The BAM was uploaded into the Firehose pipeline 
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(http://www.broadinstitute.org/cancer/cga/Firehose). Quality control modules within Firehose 

were applied to all sequencing data for comparison of the origin for tumor and normal genotypes 

and to assess fingerprinting concordance. Cross-contamination of samples was estimated using 

ContEst (59). 

Somatic alteration assessment 

MuTect (60) was applied to identify somatic single-nucleotide variants. Indelocator 

(http://www.broadinstitute.org/cancer/cga/indelocator), Strelka (61), and MuTect2 

(https://software.broadinstitute.org/gatk/documentation/tooldocs/current/org_broadinstitute_gat

k_tools_walkers_cancer_m2_MuTect2) were applied to identify small insertions or deletions. A 

voting scheme was used with inferred indels requiring a call by at least 2 out of 3 algorithms.  

Artifacts introduced by DNA oxidation during sequencing were computationally removed using 

a filter-based method (62). In the analysis of primary tumors that are formalin-fixed, paraffin-

embedded samples (FFPE) we further applied a filter to remove FFPE-related artifacts (63).  

Reads around mutated sites were realigned with Novoalign 

(www.novocraft.com/products/novoalign/) to filter out false positive that are due to regions of 

low reliability in the reads alignment. At the last step, we filtered mutations that are present in a 

comprehensive WES panel of 8,334 normal samples (using the Agilent technology for WES 

capture) aiming to filter either germline sites or recurrent artifactual sites. We further used a 

smaller WES panel of 355 normal samples that are based on Illumina technology for WES 

capture, and another panel of 140 normal samples sequenced without our cohort (64) to further 

capture possible batch-specific artifacts. Annotation of identified variants was done using 

Oncotator (65) (http://www.broadinstitute.org/cancer/cga/oncotator). 

Copy number and copy ratio analysis 

To infer somatic copy number from WES, we used ReCapSeg (http:// 

gatkforums.broadinstitute.org/categories/recapseg-documentation), calculating proportional 

coverage for each target region (i.e., reads in the target/total reads) followed by segment 

normalization using the median coverage in a panel of normal samples. The resulting copy ratios 

were segmented using the circular binary segmentation algorithm (66). To infer allele-specific 
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copy ratios, we mapped all germline heterozygous sites in the germline normal sample using 

GATK Haplotype Caller (67) and then evaluated the read counts at the germline heterozygous sites 

in order to assess the copy profile of each homologous chromosome. The allele-specific copy 

profiles were segmented to produce allele specific copy ratios. 

Gene sets Overall Expression 

We used the following scheme to compute the Overall Expression (OE) of a gene set (signature). 

The OE metric (32) filters technical variation and highlights biologically meaningful patterns. The 

procedure is based on the notion that the measured expression of a specific gene is correlated with 

its true expression (signal), but also contains a technical (noise) component. The latter may be due 

to various stochastic processes in the capture and amplification of the gene’s transcripts, sample 

quality, as well as variation in sequencing depth. The OE of a gene signature is computed in a way 

that accounts for the variation in the signal-to-noise ratio across genes and cells. 

Given a gene signature and a gene expression matrix E (as defined above), we first binned the 

genes into 50 expression bins according to their average expression across the cells or samples. 

The average expression of a gene across a set of cells within a sample is Ei,p (see: scRNA-seq pre-

processing and gene expression quantification) and the average expression of a gene across a 

set of N tumor samples was defined as: 𝔼j[Eij] = ∑ Eij

Nj . Given a gene signature S that consists of 

K genes, with kb genes in bin b, we sample random S-compatible signatures for normalization. A 

random signature is S-compatible with a signature S if it consists of overall K genes, such that in 

each bin b it has exactly kb genes. The OE of signature S in cell or sample j is then defined as: 

OEj =  
∑ Ciji∈S

𝔼S̃[∑ Ciji∈S̃ ] 

Where S̃ is a random S-compatible signature, and Cij is the centered expression of gene i in cell or 

sample j, defined as Cij = Eij − 𝔼[Eij]. Because the computation is based on the centered gene 

expression matrix C, genes that generally have a higher expression compared to other genes will 

not skew or dominate the signal. We found that 100 random S-compatible signatures are sufficient 

to yield a robust estimate of the expected value 𝔼S̃[∑ Ciji∈S̃ ]. The distribution of the OE values was 

normal or a mixture of normal distributions, facilitating subsequent analyses. 
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We use the term transcriptional program (e.g., the core oncogenic program) to denote cell states 

defined by a pair of signatures, such that one (S-up) is overexpressed and the other (S-down) is 

underexpressed. The OE of a program is then the OE of S-up minus the OE of S-down. 

In cases where the OE of a given signature/program has a bimodal distribution across the cell 

population, it can be used to naturally separate the cells into two subsets. To this end, we applied 

the Expectation Maximization (EM) algorithm for mixtures of normal distributions to define the 

two underlying normal distributions. We then assigned cells to two subsets, depending on the 

distribution (high or low) they were assigned to.  

Cell type assignments 

Cell type assignments were performed based on genetic and transcriptional features, according to 

the following four analyses: 

(1) Fusion detection. Fusion detection was performed with STAR-Fusion (26), to detect any 

transcript that indicates the fusion of two genes. 

(2) Copy Number Alterations (CNA) inference. To infer CNAs from the scRNA-seq data we 

used the approach described in (58), as implemented in the R code provided in 

https://github.com/broadinstitute/inferCNA with the default parameters. To identify malignant 

cells based on CNA patterns, we defined the overall CNA level of a given cell as the sum of the 

absolute CNA estimates across all genomic windows. Within each tumor, we identified CD45- 

cells with the highest overall CNA level (top 10%), and considered their average CNA profile as 

the CNA profile of the pertaining tumor. For each cell we then computed a CNA-R-score defined 

as the Spearman correlation coefficient obtained when comparing its CNA profile to the inferred 

CNA profile of its tumor. Cells with a high CNA-R-score (greater than the 25% of the CD45- cell 

population) were considered as malignant according to the CNA criterion. As certain 

tumors/malignant cells have a stable genome, we did not use the CNA criterion to identify non-

malignant cells. Large-scale CNAs were visualized (Fig. 1G) using a Bayesian approach, as 

described in https://github.com/broadinstitute/infercnv/wiki/infercnv-i6-HMM-type. 

(3) Differential similarity to bulk tumors. We compared the scRNA-Seq profiles to those of bulk 

sarcoma tumors (23). RNA-Seq of bulk sarcoma tumors was downloaded from TCGA 
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(http://xena.ucsc.edu). For each cell in our scRNA-Seq cohort we: (i) computed the Spearman 

correlation between its expression profile and the expression profiles of the bulk sarcoma tumors, 

and (ii) examined if the rs coefficients obtained when comparing the cell to SyS tumors were higher 

than those obtained when comparing the cell to non-SyS sarcoma tumors, using a one-sided 

Wilcoxon ranksum test. Cells with a ranksum p-value < 0.05 were considered as potentially 

malignant, and as potentially non-malignant otherwise.  

(4) Expression profile clustering. We clustered the cells by applying a shared nearest neighbor 

(SNN) modularity optimization algorithm (68), as implemented in the Seurat R package. First, 

Principle Component Analysis (PCA) was preformed and k-nearest neighbors (kNN) were 

calculated to construct the k-NN graph. The k-NN graph was used to identify clusters that optimize 

the modularity function. Next, we assigned clusters to cell types. Clusters where the majority of 

cells had the SS18-SSX1/2 fusion (by the method in (1)) were considered as malignant clusters. 

Non-malignant clusters were assigned to cell types by computing the OE of well-established cell 

type markers across the non-malignant cells (Supp. Table 2). The OE of each of these cell type 

signatures had a bimodal distribution across the cell population. Applying the Expectation 

Maximization (EM) algorithm for mixtures of normal distributions, we defined the two underlying 

normal distributions, and assigned cells to cell types. Each non-malignant cluster was enriched for 

cells of a particular cell type, and was assigned to that cell type. 

We used these four converging criteria to assign the cells to nine cell subsets: malignant cells, 

epithelial cells, Cancer Associated Fibroblasts (CAFs), CD8 and CD4 T cells, B cells, NK cells, 

macrophages, and mastocytes. Specifically, a cell was labeled malignant if it was CD45- and 

classified as malignant according to analyses (3) and (4) above. A cell was labeled non-malignant 

if it was classified as non-malignant according to analyses (1-4) above. Non-malignant cells were 

then further assigned to cell types based on their cluster assignment by (4). Cells with inconsistent 

assignments (157 in the SMART-Seq dataset and 558 in the droplet-based dataset) were removed 

from further analyses. Lastly, within malignant cells we identified epithelial cells by clustering 

each of the biphasic tumors into two clusters.  

Cell type assignments were preformed separately for the SMART-Seq2 and droplet scRNA-Seq 

datasets cohort. Fusion detection was performed only with the full length SMART-Seq2 data. 
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Cell type signatures 

Cell type signatures were generated based on pairwise comparisons between identified cell 

subtypes: malignant cells, epithelial cells, CAFs, CD8 and CD4 T cells, B cells, NK cells, 

macrophages, and mastocytes. For each pair of cell subtypes we identified differentially expressed 

genes using the likelihood-ratio test (69), as implemented in the Seurat package 

(http://www.satijalab.org/seurat). Genes were considered as cell type specific if they were 

overexpressed in a particular cell subtype compared to all other cell subtypes (log-fold change > 

0.25 and p-value < 0.05, following Bonferroni correction). We defined a general T cell signature 

for both CD4 and CD8 cells by identifying genes that were overexpressed in both CD4 and CD8 

compared to all other (non T) cells. A more permissive version of this generic T cell signature 

includes genes which were overexpressed in CD4 or CD8 T cells compared to all other (non T) 

cells. 

Inferring tumor composition 

Tumor composition was assessed based on the Overall Expression of the different cell type specific 

signatures we identified from the scRNA-seq data (Supp. Table 2). For example, the CD8 T cell 

signature was used to infer the level of CD8 T cells in the tumor, and likewise for other cell types. 

To estimate tumor purity we used the malignant SyS signature identified here (Supp. Table 2), 

which consists of genes that are exclusively expressed by malignant SyS cells compared to non-

malignant cells in SyS tumors. 

To evaluate the performance of this approach, we simulated 200 bulk RNA-Seq profiles. For each 

simulated bulk RNA-Seq profile we: (1) randomly chose one of the tumors in the cohort; (2) 

sampled 100 cells from different cell types profiled in this tumor – these cells include a mix of 

immune, stroma and malignant cells, at a randomly chosen composition; (3) summed the scRNA-

Seq profiles of this  randomly chosen population (P) of 100 cells, such that the bulk expression of 

gene i across this population was defined as 

Ei,P = log2 (1 +
∑ TPMi,jj∈P

100
) 
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We also used cell type signatures we previously derived from melanoma scRNA-Seq data (32) to 

predict the tumor composition of the simulated SyS bulk RNA-Seq profiles, and vice versa. We 

then compared the predictions to the known cell type composition. The predicted composition was 

highly correlated with the known composition (r > 0.9, P < 1*10-30, Spearman correlation) for all 

cell types. 

Multilevel mixed-effects models 

To examine the association between two cell features, denoted here as x and y, across different 

patients or experiments we used multilevel mixed-effects regression models (random intercepts 

models). The models include patient/experiment-specific intercepts to control for the dependency 

between the scRNA-seq profiles of cells that were obtained from the same patient/experiment. The 

models also control for data quality by providing the number of reads (log-transformed) that were 

detected in each cell as a covariate. To compute the association between features x and y we 

provided x as another covariate and used y as the dependent variable. The models were 

implemented using the lme4 and lmerTest R packages (https://CRAN.R-

project.org/package=lme4, https://CRAN.R-project.org/package=lmerTest).  

For example, to test if malignant cycling cells were more frequent in treatment naïve samples, we 

used a logistic mixed-effects model as described above. The dependent variable y was the cycling 

status of the malignant cells. The independent covariate x was a binary variable denoting if the 

sample was obtained before or after treatment. Only malignant cells were included in this model. 

T Cell Receptor (TCR) reconstruction and T cell expansion program 

TCR reconstruction was performed using TraCeR (31), with the Python package in 

https://github.com/Teichlab/tracer. To characterize the transcriptional state of clonally expanded 

T cells, we first identified the clonality level of the T cells in our cohort. T cell that were obtained 

from tumors with a larger number of T cells with reconstructed TCRs were more likely to be 

defined as expanded. To control for this confounder we performed the following down-sampling 

procedure. First, we removed T cells without a reconstructed alpha or beta TCR chain, and samples 

with less than 20 T cells with a reconstructed TCR. Next, we computed the probability that a given 

cell will be a part of a clone when subsampling 20 T cells from each tumor. T cells with a high 
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probability to be a part of a clone (above the median) were considered expanded, and non-

expanded otherwise. To identify the genes differentially expressed in expanded CD8 T cells we 

used mixed-effects models with a binary covariate, denoting if the cell was classified as expanded 

or not. 

CD8 T cell analyses 

The analysis of T cell exhaustion vs. T cell cytotoxicity was performed as previously described 

(58), with the exhaustion signature provided in (58). First, we computed the cytotoxicity and 

exhaustion scores of each CD8 T cell. Next, to control for the association between the expression 

of exhaustion and cytotoxicity markers, we estimated the relationship between the cytotoxicity and 

exhaustion scores using locally-weighted polynomial regression (LOWESS, black line in Fig. 2B). 

Based on these values we classified the CD8 T cells into four groups: Cells with a low cytotoxicity 

score (below the 25th percentile) were classified as naïve or memory-like cells, while the others 

were considered effector or exhausted if their cytotoxicity scores were significantly higher or lower 

than expected given their exhaustion scores, respectively. According to this classification, we 

examined if the clonal expansion program was higher in the effector-like cells. In addition, we 

compared the SyS CD8 T cells to CD8 T cells from human melanoma tumors (32) using mixed-

effects models with a sample-level covariate denoting if the sample was obtained from a SyS or 

melanoma tumor. 

Malignant epithelial and mesenchymal differentiation programs 

The epithelial and mesenchymal signatures were obtained through intra-tumor differential 

expression analysis, using the likelihood-ratio test for single cell gene expression (69), as 

implemented in the Seurat package (http://www.satijalab.org/seurat). We compared the 

mesenchymal to epithelial cells in each of the three biphasic tumor samples (SyS1, SyS12 and 

SyS12pt). The tumor SyS16 was not included in this analysis (although it was annotated as 

partially biphasic according to its histology), because its scRNA-Seq sample did not include any 

epithelial malignant cells. Genes that were up-regulated in the epithelial cells compared to the 

mesenchymal cells in all three samples were defined as epithelial genes, and likewise for 

mesenchymal genes. When using the epithelial and mesenchymal signatures in the analysis of bulk 
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gene expression we removed from these signatures those genes that are also part of non-malignant 

cell type signatures. 

Using these signatures we defined: (1) the epithelial vs. mesenchymal differentiation score as the 

OE of the epithelial signature minus the OE of the mesenchymal signature, and (2) the 

differentiation score as the OE of the epithelial signature plus the OE of the mesenchymal 

signature. An alternative way to define the differentiation score of a particular cell is first to assign 

it to the epithelial or mesenchymal subset, and then use only the pertaining signature to estimate 

its differentiation level. However, this approach will not distinguish between poorly-differentiated 

mesenchymal cells, and mesenchymal cells which have begun to transition to an epithelial state. 

Hence, we used the inclusive definition of differentiation. 

Based on the genes in the epithelial and mesenchymal signatures we then generated diffusion maps 

(70) for each one of the tumors in our cohort, using the density R package 

(https://bioconductor.org/packages/release/bioc/html/destiny.html) with the default parameters. 

Identifying co-regulated gene modules 

To identify co-regulated gene modules that capture intra-tumor heterogeneity we analyzed each 

tumor separately. To identify patterns that explain the cell-cell variation both in epithelial and in 

mesenchymal malignant cells, we further divided the biphasic samples (SyS1, SyS12, and 

SyS12pt) to their epithelial and mesenchymal compartments. We used PAGODA (71) as 

implemented in https://github.com/hms-dbmi/scde to filter technical variation and identify co-

regulated gene modules in each sample. To identify genes that were repeatedly co-regulated we 

then constructed a gene-gene co-regulation graph. In this graph, an edge between two genes 

denotes that the two genes appeared together in the same gene module in at least five samples. 

Next, we identified dense clusters in the graph using the Newman-Girvan (72) community 

clustering as previously implemented (73). We filtered out small gene clusters (< 20 genes). Lastly, 

for each gene cluster we identified the opposing gene module by identifying genes that were 

negatively correlated with its Overall Expression (OE) across the malignant cells. Correlation was 

computed using partial Spearman correlation, when controlling for the number of genes and (log-
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transformed) reads detected per cells, and correcting for multiple hypotheses testing using the 

Benjamini-Hochberg procedure (74). 

For comparison we applied another complementary approach, LIGER (75), which identifies 

repeating gene modules in the malignant cells using integrative non-negative matrix factorization 

(NMF) (76). Integrative NMF learns a low-dimensional space, where cells are defined by one set 

of dataset-specific factors (denoted as Vi), and another set of shared factors (denoted as W). Each 

factor, or metagene, represents a distinct pattern of gene co-regulation. To find these metagenes it 

solves the following optimization problem 

𝑎𝑟𝑔𝑚𝑖𝑛𝐻𝑖,𝑉𝑖,𝑊≥0 ∑ ‖𝐸𝑖 − 𝐻𝑖(𝑊 + 𝑉𝑖)‖𝐹
2

𝑖 +  𝜆 ∑ ‖𝐻𝑖𝑉𝑖‖𝐹
2

𝑖   

Where Ei denotes the expression matrix (log-transformed TPM) of the malignant cells in sample 

i, Vi denotes sample-specific metagenes and W denotes the shared metagenes across all samples. 

For this analysis, each biphasic tumor was again split to two “samples”, of epithelial and 

mesenchymal cells. We used the top 100 genes of each metagene in W as the iNMF signatures, 

and then computed the overall expression of these signatures in the malignant cells. The resulting 

signatures and their expression across the malignant cells matched the signatures identified with 

the PCA-based approach, and specifically the core-oncogenic program was re-discovered (Supp. 

Fig. 4A). 

Quantifying RNA velocity 

Estimates of RNA velocity were computed using the Velocyto toolkit (http://velocyto.org/). We 

applied Velocyto with the default parameters, using a gene-relative model. To explore the potential 

transitions between the epithelial and mesenchymal cell states and avoid confounders, we used 

only the genes from these differentiation programs (Supp. Table 4) for the analysis.  

Predicting patient prognosis 

To test if a given program predicts metastasis free-survival or overall survival, we first computed 

the OE of the program in each tumor based on the bulk gene expression data. Next, we used a Cox 

regression model with censored data to compute the significance of the association between the 

expression values and survival. To visualize the predictions of a specific signature in a Kaplan 
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Meier (KM) plot, we stratified the patients into three groups according to the program expression: 

high or low expression correspond to the top or bottom 20% of the population, respectively, and 

intermediate otherwise. We used a log-rank test to examine if there was a significant difference 

between the survival rates of the three patient groups. 

Analysis of in situ immunofluorescence imaging 

Immune cells were detected based on the protein level of CD45 (>7.5 log-transformed). Malignant 

cells were identified based on histological morphology, and high protein levels of Hes1. High 

protein expression was detected by applying the EM algorithm for mixtures of normal 

distributions. The core oncogenic program score was computed only in the malignant cells based 

the combined expression of its repressed protein markers: Hsp90, p21, NFkB, and cJun (minus 

sum of centered log-transformed values). Each image – corresponding to a specific sample in the 

scRNA-Seq cohort – was divided to frames of 100 cells. The average expression of the core 

oncogenic program in the malignant cells and the fraction of immune cells in each frame was 

computed. Using these frame-level values we examined the association between the expression of 

the core oncogenic program in the malignant cells and the fraction of the immune cells, using a 

mixed-effects model, with a sample-level intercept (see Multilevel mixed-effects models). The 

mixed-effect model accounts for the nested structure of the data (frames are associated with 

samples), and ensures the pattern repeatedly appears across different samples. 

Analysis of in situ RNA profiling 

FASTQ files from multiple lanes were merged to generate single files for processing and insure 

proper removal of PCR duplicates later in the pipeline. Illumina adapter sequences were trimmed 

using Trim Galore (version 0.4.5) with a minimum base pair overlap stringency of four bases and 

a base quality threshold of 20. Paired end reads were stitched using Paired-End reAd mergeR 

(PEAR, version 0.9.10) specifying a minimum stitched read length of 24bp and a maximum 

stitched read length of 28bp. The 14bp UMI sequence was extracted from the stitched FASTQ 

files from the 5’ end of the sequence reads using umi tools (version 0.5.3). The FASTQ files with 

extracted UMIs were then aligned to a genome containing the 12bp reference sequence tags using 

bowtie2 (version 2.3.4.1) in end-to-end mode with a seed length of four. Using a custom python 

function, the generated SAM files were split into multiple SAM files based on the tag to which 
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they aligned to limit memory usage when removing PCR duplicates. The split SAM files were 

converted to bam files, sorted, and index using samtools (version 1.9) with the import, sort, and 

index options respectively. PCR duplicates were removed from the sorted and indexed bam files 

using the dedup command from umi tools with an edit distance threshold of three. An edit distance 

threshold of three was used. Using custom python functions, the SAM files with PCR duplicates 

removed were merged for each sample and used to generate digital counts of the tags. 

Outlier counts were removed before generating a consensus count for each target. Outlier tags 

were identified as those with counts 90% below the mean of the probe group in at least 20% of the 

ROIs analyzed and removed them from the analysis. Subsequently, we removed tags from the 

analysis if they were flagged as outliers in at least 20% of the AOIs analyzed. This was done using 

the Rosner Test if there were at least 10 probes for the target (k = 0.2 * Number of Probes, alpha 

= 0.01), or the Grubbs test if there were less than 10 probes for the target. Probes flagged as outliers 

in less than 20% of the ROIs analyzed were only removed from the analysis for the ROIs in which 

they were flagged. Count reported for each target transcript were calculated as the geometric mean 

of the remaining probes. 

The counts for each target transcript were then normalized to the count of the house keeper genes 

(C1orf43, GPI, OAZ1, POLR2A, PSMB2, RAB7A, SDHA, SNRPD3, TBC1D10B, TPM4, TUBB, 

UBB). The geometric mean of the house keeper gene counts was calculated for each ROI. These 

geometric means were then divided by the geometric mean of the geometric mean of the house 

keeper genes to generate a normalization factor for each ROI. The counts of the transcripts in each 

AOI were than multiplied by the associated normalization factor. 

The normalized in situ RNA measures were used to compute: (1) the T cell levels as described in 

the Inferring tumor composition section; (2) the overall expression of the malignant programs in 

each of the regions of interest (ROI), as described in the Gene sets Overall Expression section; 
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and (3) the differentiation scores, as described in the Malignant epithelial and mesenchymal 

differentiation programs section. 

Identifying SS18-SSX targets 

The fusion program consists of genes that were differentially expressed in the Aska or SYO1 cells 

with the SS18-SSX shRNA (shSSX) compared to those with control shRNA (shCt) after 3 or 7 

days post-infection. Gene that were previously reported (18,19) to be bound by the SS18-SSX 

oncoprotein in at least two SyS cell lines were defined as direct SS18-SSX targets, and were used 

to stratify the SS18-SSX program to direct and indirect targets. 

Mapping cancer-immune interactions 

The association between the core oncogenic program in the malignant cells and the expression of 

different ligands/cytokines in the immune cells was examined using the multilevel mixed-effects 

regression model described above, using the scRNA-Seq data collected from SyS tumors. The 

dependent variable y was the OE of the core oncogenic program and the covariate x was the 

average expression of a certain ligand/cytokine in a specific type of immune cells (e.g., 

macrophages) that were profiled from the same tumor. The model also corrected for inter-patient 

dependencies using the patient-specific intercepts and for cell complexity (log(number of reads)). 

We restricted the analysis to ligands/cytokines that can physically bind to proteins expressed by 

the malignant cells (77). The immune cells were either macrophages or CD8 T cells, as other 

immune cell types were not sufficiently represented in the data. 

We used a similar approach to further stratify the program to its TNF/IFN-dependent and 

independent components. We repeated the same analysis described above, using each one of the 

genes in the core oncogenic program as the dependent variable. Genes which were associated with 

both TNF and IFN (P < 0.05, following Bonferroni correction) were considered as TNF/IFN-
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dependent, and genes which were not associated with both cytokines (P > 0.05) were considered 

as TNF/IFN-independent. 

TNF and IFNJ impact on SyS cell cultures 

SyS cell cultures were treated with TNF and IFNJ, separately and in combination (see In vitro 

IFN/TNF experiment section), and profiled with scRNA-Seq. Given this data, differentially 

expressed genes and gene sets were identified using mixed-effects regression models (Multilevel 

mixed-effects models section), with experiment-specific intercepts. The dependent variable y was 

the expression of a gene or the OE of a gene set. The model included three treatment covariates: 

only TNF, only IFN, and a combination of TNF and IFN. Another binary covariate denoted the 

duration of the treatment (1 for < 24h duration and 0 otherwise). The model corrected for 

differences between the different SyS cultures and experiments, and identified patterns that 

repeatedly appeared across the different experiments. The effect-size and significance of the 

combination covariate denotes the effect of the combination, and not the synergy between the two 

cytokines. 

To examine if the combined treatment with TNF and IFNJ had synergistic effects, we used only 

the control cells and the cells treated for 4 days with one or two of the cytokines. This model also 

included 3 binary treatment covariates (TNF, IFN, and the combination), but this time cells that 

were treated with the combination were positive for all three treatment covariates. The effect-size 

and significance of the combination covariate hence denotes the synergistic effect of the 

combination. 

Reconstructing regulatory networks 

To reconstruct the gene regulatory network controlling the core oncogenic program we assembled 

a database of transcription factor (TF) to target mapping based on four sources: JASPAR (78), 

HTRIdb (79), MSigDB (80,81), and TRRUST (82), and augmented it with the direct SS18-SSX 

targets identified here (Supp. Table 5A) and TF-target pairs we identified in a cis-regulatory motif 

analysis of the core oncogenic program. Specifically, for the cis-regulatory analysis, we used 

RcisTarget (83) (a R/Bioconductor implementation of icisTarget (84) and iRegulon (85)) to 

identify cis-regulatory elements significantly overrepresented in a window of 500bp around the  
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transcription start site of the core oncogenic genes (normalized enrichment score > 3.0) along with 

their cognate TFs. 

We pruned the resulting network to include only core oncogenic program genes (and SS18-SSX) 

(i.e., all TFs and targets aside from SS18-SSX are program genes). An edge in the network between 

a TF and its target denotes that: (1) the TF is regulating the target according to at least one of the 

sources described above, and (2) there is an association between their expression levels in the 

scRNA-Seq data of SyS tumors. Edges are weighted 1 and -1 to reflect positive and negative 

associations. We used pageRank (86) (with the R implementation as provided in igraph 

(https://igraph.org/r/)) as a measure of TF and target importance in the network. To compute TF 

importance we first flipped the direction of the edges in the network, going from target to TFs. 

Consistent with the network weights, targets from the up- or down-regulated side of the network 

were considered induced or repressed, respectively. Likewise, TFs from the up- or down-regulated 

side of the network were considered activators and repressors, respectively. 

Selectivity and synergy in drug experiments 

To evaluate the impact of each drug on the expression of a certain program or gene in a specific 

cell lines (SYO1, HSSYII, or MSCs), we used a regression model with four binary treatment 

covariates: abemaciclib, TNF, panobinostat, and the combination of all three drugs. As in the case 

of TNF/IFN analysis, to examine the synergy of the combination, the cells treated with the 

combination were positive for all four treatment covariates. The model also included the number 

of reads detected in each cell (log-transformed) to control for technical variation. When examining 

the impact on the two SyS cell lines together, we used a mixed-effects model with a cell line 

specific intercept, to control for cell line specific baseline states. Drug selectivity was examined 

by using a mixed-effects model that accounts for all three cell lines and has another covariate to 

denote if the treated cells were SyS or not. 

Data availability 

Processed scRNA-seq data and interactive plots generated for this study will be provided through 

the Single Cell Portal. The processed scRNA-seq data will be provided via the Gene Expression 

Omnibus (GEO). 
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SUPPLEMENTAL FIGURE LEGENDS  

Supplementary Figure 1. Consistent classification of cells based on expression and genetic 

features. (a) Converging assignments of cell identity. tSNE of single-cell profiles (dots), colored 

by (1) tumor sample, (2) inferred cell type, (3) SS18-SSX1/2 and MEOX2-AGMO fusion 

detection, (4) SSX1/2 gene detection (mRNA level > 0), (5) MEOX2 and AGMO gene detection 

(mRNA level > 0), (6-12) overall expression of well-established cell type markers (Supp. Table 

2). (b) Droplet based scRNA-Seq of SyS. tSNE of single cells  (dots), profiled with droplet-based 

scRNA-seq (25), colored according to tumor sample (left) and inferred cell type (right). (c) 

Differential similarity to SyS compared to other sarcomas (Methods) distinguishes malignant from 

non-malignant cells. Differential similarity (y axis) to SyS shown for cells in each cell subset (x 

axis). Middle line: median; box edges: 25th and 75th percentiles, whiskers: most extreme points 

that do not exceed ±IQR*1.5; further outliers are marked individually. (d) The SyS program 

distinguishes between SyS and non-SyS cancer types. Distribution of the SyS program 

Overall Expression (y axis) across BAF driven tumors (left, x axis) and in TCGA (right, x 

axis). In (c-d) Middle line: median; box edges: 25th and 75th percentiles, whiskers: most extreme 

points that do not exceed ±IQR*1.5; further outliers are marked individually; P-value: Wilcoxon-

ranksum test; AUC: Area Under the receiver operating characteristic Curve.   
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Supplementary Figure 2. Antitumor immunity and immune evasion in synovial sarcoma. 

(a-c) M1 and M2 states in macrophages are comparable to melanoma. (a) tSNE of macrophage 

profiles, colored by M1/M2 polarization scores (Overall Expression of the M1 minus M2 

program), according to signatures defined here by comparing between the two macrophage clusters 

(Supp. Table 3B). (b) Distribution of M1/M2 polarization scores (y axis) according to previously 

defined signatures (87) in macrophages in our datasets partitioned to M1-like and M2-like 

subgroups. (c) Spearman correlation coefficient (color bar) between each pair of genes from M1 

and M2 signatures defined here (top, Supp. Table 3B) or previously (87) (bottom) across 

macrophages in SyS (left) and melanoma (32) (right). (d) Prognostic value of T cell levels in 

different tumor types. Kaplan-Meier (KM) curves of survival in melanoma (left) (88), sarcoma 

(middle) (23), and SyS (8) (right), stratified by high (top 25%, red), low (bottom 25%, blue), or 

intermediate (remainder, green) levels of inferred T cell infiltration levels (Methods). P: COX 

regression p-value. (e) The cancer testis antigens CTAG1A, CTAG1B (encoding for NY-ESO-

1), and PRAME are exclusively expressed by SyS malignant cells. Distribution of expression 

of each gene (y axis, log-transformed TPM) in the cells of each subset (x axis). Middle line: 

median; box edges: 25th and 75th percentiles, whiskers: most extreme points that do not exceed 

±IQR*1.5; further outliers are marked individually. 
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Supplementary Figure 3. Characterizing mesenchymal, epithelial and poorly differentiates 

malignant cells. (a) Epithelial and mesenchymal program genes. The expression of the top 

epithelial and mesenchymal program genes (rows) across the malignant cells (columns), with cells 

sorted according to the difference in epithelial vs. mesenchymal OE scores (bottom plot). Topmost 

Color bar: epithelial vs. non-epithelial cell status, and sample. Canonical markers and immune-

related genes are in red and blue, respectively. (b) Cell cycle signature. Overall Expression of the 

G2/M (y axis) and G1/S (x axis) phase signatures in each malignant cell, colored by their cycling 

status. (c) Cycling cells are less differentiated. The distribution of differentiation scores of cycling 

(red) and non-cycling (grey) malignant cells, across all tumors (top) and within each tumor 

(bottom; only tumors with at least 10 cycling cells are shown). (d) RNA velocities (38) are 

visualized on top of the two first principle components (PCs), showing the state and velocity of 

the malignant cells obtained from patient SyS12 using the droplet-based approach (25). (e) t-SNE 

plots of malignant cells obtained from patient SyS12 before and after treatment, revealing a 

subpopulation of mesenchymal cells without copy number amplifications in chromosomes 15, 18 

and 19 (Fig. 1G). 
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Supplementary Figure 4. The core oncogenic program is detected using different approaches 

and datasets. (a) Agreement between the core oncogenic program detected by a PCA and an 

iNMF approach (76). Overall Expression (OE) of the core oncogenic program across malignant 

SyS cells, as identified in the PCA-based approach (71) (x axis) and in the integrative-NMF 

approach (76) (y axis) (Methods).  (b-c) Program Overall Expression captures inter-tumor 

variation and the MYC-high cluster in 64 SyS tumors from an independent RNA-Seq cohort (18). 

The tumors were previously classified into two transcriptionally distinct clusters (18), denoted here 

as MYC-high and MYC-low. (b) For each tumor (dots), shown is the Overall Expression (OE) of 

the core oncogenic program (y axis) vs. the projection on the second Principle Component (PC2) 

of the data. (c) Normalized expression (centered log-transformed RPKM) of the core oncogenic 

program genes (columns) most correlated with PC2 across the tumors (columns). Tumors are 

sorted by their PC2 projection (bottom bar).  
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Supplementary Figure 5. Characterizing the transcriptional impact of SS18-SSX inhibition 

and tumor microenvironment cytokines on synovial sarcoma cells. (a) The fusion KD induces 

innate immune programs. Distribution of Overall Expression scores (y axis) in the pathways most 

differentially expressed between SyS cells with SS18-SSX (shSSX, grey) vs. control (shCt, blue) 

shRNA, shown separately for non-cycling and cycling cells (x axis). (b) Biological processes 

regulated in the SS18-SSX program. Gene sets (rows) most enriched (-log10(P-value), 

hypergeometric test, x axis) in induced (left) and repressed (right) SS18-SSX program genes, 

which are either direct (black bars) or indirect (grey bars) targets of SS18-SSX based on ChIP-Seq 

data (18,19) and genetic perturbation. Vertical line denotes statistical significance following 

multiple hypotheses correction. (c) The SS18-SSX program distinguishes SyS from other cancer 

types and other sarcomas. Overall Expression of the SS18-SSX program (y axis) in either TCGA 

samples (n = 9,391, top), stratified by cancer types (x axis), or in another independent cohort of 

sarcoma tumors (n = 164, bottom) (48). Middle line: median; box edges: 25th and 75th percentiles, 

whiskers: most extreme points that do not exceed ±IQR*1.5; further outliers are marked 

individually. **P<0.01, ***P<1*10-3, ****P<1*10-4, t-test. (d) Repression of the core oncogenic and 

SS18-SSX programs by short term TNF treatment is not sustained long term. Distribution of 

Overall Expression scores (y axis) of the core oncogenic program and the direct and indirect SS18-

SSX programs (x axis) in control cells (blue) and cells treated with TNF for 4-6 hours (right) or 

more than 24 hours (left). 
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Supplementary Figure 6. HDAC and CDK4/6 inhibitors synergistically repress the core 

oncogenic program and induce cell autonomous immune responses. Distribution of the 

expression (y axis) of core oncogenic genes (a), as well as the Overall Expression of TNF (b) and 

IFN (c) signaling pathways in SyS cells and MSCs (x axis) under different treatments (color 

legend). Middle line: median; box edges: 25th and 75th percentiles, whiskers: most extreme points 

that do not exceed ±IQR*1.5; further outliers are marked individually. **P<0.01, ***P<1*10-3, 
****P<1*10-4, t-test.  
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SUPPLEMENTAL TABLES LEGENDS 

The Supplemental Tables are provided in separate (Excel) files. 

Supplementary Table 1. (A) Clinical characteristics of the patients and samples in the 

scRNA-seq cohort and (B) Quality measures of the scRNA-seq cohort. 

Supplementary Table 2. Cell type signatures derived from the analysis of the SyS scRNA-

seq cohort, as well as canonical cell type markers used for cell assignments.  

Supplementary Table 3. Immune cell states: (A) the T cell expansion program, and (B) 

M1-like and M2-like macrophage signatures. 

Supplementary Table 4. Malignant programs: epithelial, mesenchymal, cell cycle and core 

oncogenic programs (A), and their enrichment with pre-defined gene sets (81) (B). 

Supplementary Table 5. The fusion program (A) and its enrichment with pre-defined gene 

sets (81) (B). 

Supplementary Table 6. TNF and IFNJ effects in synovial sarcoma: (A) The predicted 

TNF/IFNJ-dependent and independent components of the core oncogenic program according to 

the cell-cell interaction analyses (Methods); (B) differentially expressed genes following TNF 

and IFNJ treatment, and (C) their enrichment with pre-defined gene sets (81). 
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